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Abstract. The Wróblewski parameter is a convenient indicator of strangeness production and can be
employed to monitor a signal of quark–gluon plasma production : enhancement of strangeness production.
It has been shown to be about a factor two higher in heavy ion collisions than in hadronic collisions. Using
a method proposed by us earlier, we obtained lattice QCD results for the Wróblewski parameter from our
simulations of QCD with two light quarks both below and above the chiral transition. Our first principles
based and parameter free result compare well with the A–A data from SPS and RHIC.

PACS. 12.38.Mh, 12.38.Gc

1 Introduction

As with many signals of quark–gluon plasma (QGP) pro-
duction in relativistic heavy ion collisions, the basic idea
behind enhancement of strangeness production [1] as a
QGP signal is very simple. Recognising the fact that the
strange quark mass is smaller than the expected transition
temperature whereas the mass of the lowest strange hadron
is significantly larger, it was argued that the production
rate for strangeness in the QGP phase, σQGP(ss̄) is greater
than that in the hadron gas phase, σHG(ss̄). While this en-
ergy threshold argument for strangeness production in the
two phases is qualitatively appealing, one has to face quan-
titative questions of details for any meaningful comparison
with the data. Applications of perturbative QCD need a
large scale which could be either the temperature of QGP
or the mass of the produced strange quark–antiquark pair.
Since the temperature of the plasma produced in RHIC,
or even LHC, may not be sufficiently high for perturbative
QCD to be applicable and since the strange quark mass is
also rather low, estimation of strangeness production by
lowest order processes like gg → ss̄ could be misleading.
Indeed, it is now well-known that even for the charm pro-
duction, the next order correction to gg → cc̄ is as large as
the leading order; such an order by order computational
approach may be hopelessly futile for the much lighter
strange quark.

A variety of aspects of the strangeness enhancement
have been studied and many different variations have been
proposed. One very useful way of looking for strangeness
enhancement is the Wróblewski parameter [2]. Defined as
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the ratio of newly created strange quarks to light quarks,

λs =
2〈ss̄〉

〈uū + dd̄〉 (1)

the Wróblewski parameter has been estimated for many
processes using a hadron gas fireball model [3]. An inter-
esting finding from these analyses is that λs is around 0.2
in most processes, including proton–proton scattering, but
it is about a factor of two higher in heavy ion collisions. An
obvious question one can ask is whether this rise by a factor
of two can be attributed to the strangeness enhancement
due to the quark–gluon plasma and if so, whether this can
be quantitatively demonstrated by explicitly evaluating the
Wróblewski parameter in both phases. Alternatively, one
could just study how different the prediction actually is and
learn about other physics effects from its comparison with
data. We show below how quark number susceptibilities,
obtained from simulations of lattice QCD, may be useful
in answering such questions. Since these simulations cor-
respond to equilibrium situations, one needs certain extra
assumptions which we also discuss briefly.

2 λs from quark number susceptibilities

Quark number susceptibilities (QNS) can be calculated
from first principles using the lattice formulation. Assum-
ing three flavors, u, d, and s quarks, and denoting by µf

the corresponding chemical potentials, the QCD partition
function is

Z =
∫

DU exp(−SG)
∏

f=u,d,s

Det M(mf , µf ) . (2)
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Note that the quark mass and the corresponding chemical
potential enter only through the Dirac matrix M for each
flavor. We use staggered fermions and the usual fourth root
trick [4] to define M for each flavor. Defining µ0 = µu +
µd +µs and µ3 = µu −µd, the baryon and isospin densities
and the corresponding susceptibilities can be obtained as

ni =
T

V

∂ lnZ
∂µi

, χij =
T

V

∂2 lnZ
∂µi∂µj

. (3)

QNS in (3) are crucial for many quark–gluon plasma
signatures which are based on fluctuations in globally con-
served quantities such as baryon number or electric charge.
Theoretically, they serve as an important independent check
on the methods and/or models which aim to explain the
large deviations of the lattice results for pressure P (µ=0)
from the corresponding perturbative expansion. Here we
will be concerned with the Wróblewski parameter which
we [5] have argued can be estimated from the quark num-
ber susceptibilities:

λs =
2χs

χu + χd
. (4)

Note that the lattice simulations yield the real quark
number susceptibility whereas for particle production its
imaginary counterpart is needed. Indeed, λs above too
needs the latter. However, one can relate the two and thus
justify the use of lattice results in obtaining λs. Briefly, the
argument [7] is as follows. Fluctuations in physical quanti-
ties, described by a perturbation in time, can be related to
a generalized susceptibility for the corresponding operator
for it. This is complex in general. Its imaginary part can be
shown to determine the dissipation, i.e., the production of
a strange quark–antiquark pair in our case. From the gen-
eral properties of these susceptibilities, a Kramers–Kronig
type relation between their real and imaginary parts can be
obtained. Finally, making a relaxation time approximation
(ωτ � 1), one finds that the ratio of the imaginary parts
is the same as that of the real parts.

In order to use (4) to obtain an estimate for comparison
with experiments, one needs to compute the corresponding
quark number susceptibilities on the lattice first and then
take the continuum limit. All susceptibilities can be written
as traces of products of the quark propagator, M−1(mq),
and various derivatives of M with respect to µ. With mu =
md, the diagonal χii’s can be written as

χ0 =
T

2V

[
〈O2(mu) +

1
2

O11(mu)〉
]

, (5)

χ3 =
T

2V
〈O2(mu)〉, (6)

χs =
T

4V

[
〈O2(ms) +

1
4

O11(ms)〉
]

. (7)

The operators O2 and O11 are defined by

O2 = Tr M−1
u M ′′

u − Tr M−1
u M ′

uM−1
u M ′

u , (8)

O11(mi) = (TrM−1
i M ′

i)
2 , (9)
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Fig. 1. Comparison of quenched (lines) and full QCD results
(points) for the quark number susceptibility as a function of
T/Tc. The valence quark mass (mv) values in units of Tc are
indicated. The grey band indicates the mass range for strange
quarks

where i = u or s. The traces are estimated by a stochas-
tic method: TrA =

∑Nv
i=1 R†

i ARi/2Nv, and (TrA)2 =
2

∑L
i>j=1(Tr A)i(Tr A)j/L(L − 1), where Ri is a complex

vector from a set of Nv, subdivided further in L indepen-
dent sets. We use typically Nv = 50–100.

Figure 1 displays results [6] for the susceptibilities as
a function of temperature in units of Tc, where Tc is the
transition temperature. Normalized to the corresponding
ideal gas results on the same lattice, i.e, the infinite tem-
perature limit, results for QCD with two light dynamical
quarks of mass 0.1 Tc are shown as points whereas the con-
tinuous curves correspond to the results in the quenched
approximation. Note that the latter amounts to dropping
the fermion determinant term in simulations which become
orders of magnitude faster, and hence more precise, than
the full QCD simulations. The valence quark mass mv, ap-
pearing in (5)–(7), is shown in the figure in units of Tc. Note
that Tc in these two cases differ by a factor of 1.6, but the
results for the corresponding dimensionless susceptibilities
as a function of the dimensionless ratio T/Tc differ by a
few per cent only. Such a mild dependence on the number
of dynamical flavors in the thermodynamic quantities has
been a known feature in the temperature region away from
the transition. Indeed, since the nature of the transition
does depend strongly on the number of dynamical flavors,
one expects significant differences near Tc. Encouraged by
this behavior, we investigated the continuum limit for the
quenched case by increasing the temporal lattice size from 4
to 14 in steps of two and extrapolating to infinite temporal
lattices. The spatial lattices were also increased to maintain
the aspect ratio constant. Figure 2 shows typical results
of such continuum extrapolation at T = 2 Tc. The contin-
uum results for the light quark susceptibility thus obtained
in the quenched approximation are exhibited in Fig. 3 for
small mv. The bands marked by “HTL” and “NL” show
the analytic results of [8] obtained in successively better
approximations respectively.
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Fig. 2. Continuum extrapolation results at 2Tc. The circles
and pentagons are for two different actions and the squares are
for another method. All must lead to the same result in the
Nt → ∞ continuum limit, i.e., for vanishing lattice spacing
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Fig. 3. Quenched QCD results for χ3 in the continuum limit.
The points denote different input lattice actions. The curves
are analytic results in different approximations and are from [8]

The strange quark susceptibility in the continuum limit
can be obtained from the same simulations by choosing the
valence quark mass mv appropriately. We use mv/Tc = 1,
corresponding to the canonical choice for the strange quark
mass and the Tc in the full theory. In view of Fig. 1, which
shows that the results for full and quenched QCD differ
by only a few per cent when compared in the appropriate
dimensionless variable, we expect that this choice of mv/Tc
for strange quark will lead us to results of relevance to the
world of full QCD. Using (4), λs(T ) can then be easily ob-
tained. These were extrapolated to Tc by employing simple
ansätze. The resultant λs(Tc) in quenched QCD is shown
in Fig. 4 along with the results obtained from the analysis
of the RHIC and SPS data in the fireball model [3]. The
systematic error coming from extrapolation is shown by the
brackets. The agreement of the lattice results with those
from RHIC and SPS is indeed very impressive.

The nice agreement needs to be treated cautiously, how-
ever, in view of the various approximations made. Let us
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Fig. 4. Comparison of the λs from our quenched QCD in the
continuum limit with RHIC and SPS experiments estimates [3]
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Fig. 5. λs as a function of temperature for full (filled circles)
and quenched QCD (crosses). The experimental results from
SPS and RHIC are indicated by the marked band

list them in order of severity.
(1) The result is based on quenched QCD simulations and
extrapolation to Tc. As seen from Fig. 1, the quark number
susceptibilities, and hence λs(T ), are expected to change
by only a few per cent. Since the nature of the phase tran-
sition does depend strongly on the number of dynamical
quarks, a direct computation near Tc for full QCD is de-
sirable. We are currently making such a computation and
have some preliminary results for full QCD with two light
dynamical quarks for lattices with four sites in temporal di-
rection. These are shown in Fig. 5 along with the continuum
quenched results for λs(T ) and the band for experimental
results. While the emerging trend is encouraging, further
exploration with varying strange quark mass, temporal lat-
tice size (to obtain continuum results) and spatial volume
is still necessary.
(2) The experiments at RHIC and SPS have non-zero al-
beit small µ whereas the above result used µ = 0. Based
on both lattice QCD and fireball model considerations, λs

is expected to change very slowly for small µ. This can,
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and should, be checked by direct simulations.
(3) As argued above, particle production needs the imag-
inary counterpart of what one obtains from simulations.
The relation between the ratios of real and imaginary parts
was obtained under the assumption that the characteristic
time scale of quark–gluon plasma are far from the energy
scales of strange or light quark production. Observation of
spikes in photon production may falsify this assumption.

3 Summary

Quark number susceptibilities contribute in many different
ways to the physics of the signals of quark–gluon plasma
in heavy ion collisions at SPS and RHIC. They can be
obtained from first principles using lattice QCD. This of-
fers a quantitative control and check of these signals and
thus QGP itself. In particular, the continuum limit of χu

and χs, which we obtained in quenched QCD, leads to a
temperature dependent Wróblewski parameter, λs(T ). Its
extrapolation to Tc appears to be in good agreement with
results from SPS and RHIC. First full QCD results near
Tc confirm this as well, although many technical issues,
e.g, finite lattice cut-off or strange quark mass, need to be
sorted out still.
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